Web Scraping Github Python



Web scraping with Python Web scraping is an automated, programmatic process through which data can be constantly 'scraped' off webpages. Also known as screen scraping or web harvesting, web scraping can provide instant data from any publicly accessible webpage. On some websites, web scraping. I’ve recently had to perform some web scraping from a site that required login. It wasn’t very straight forward as I expected so I’ve decided to write a tutorial for it. For this tutorial we will scrape a list of projects from our bitbucket account. The code from this tutorial can be found on my Github. We will perform the following steps.

Scraping

Loading Web Pages with 'request' The requests module allows you to send HTTP requests using. Navigate to the folder called PythonWebScrape that you downloaded to your desktop and double-click on the folder Within the PythonWebScrape folder, double-click on the file with the word “BLANK” in the name (PythonWebScrapeBLANK.ipynb). A pop-up window will ask you to Select Kernal — you should select the Python.

scraping data from a web table using python and Beautiful Soup
Cricket data.py
importurllib2
frombs4importBeautifulSoup
# http://segfault.in/2010/07/parsing-html-table-in-python-with-beautifulsoup/
f=open('cricket-data.txt','w')
linksFile=open('linksSource.txt')
lines=list(linksFile.readlines())
foriinlines[12:108]: #12:108
url='http://www.gunnercricket.com/'+str(i)
try:
page=urllib2.urlopen(url)
except:
continue
soup=BeautifulSoup(page)
title=soup.title
date=title.string[:4]+','#take first 4 characters from title
try:
table=soup.find('table')
rows=table.findAll('tr')
fortrinrows:
cols=tr.findAll('td')
text_data= []
fortdincols:
text='.join(td)
utftext=str(text.encode('utf-8'))
text_data.append(utftext) # EDIT
text=date+','.join(text_data)
f.write(text+'n')
except:
pass
f.close()

commented Jan 15, 2018

Scraping

Scrapy Hub

Web Scraping Github Python

import pandas as pd
from pandas import Series, DataFrame Sophos cfm calculator.

from bs4 import BeautifulSoup
import json
import csv

Nortek cameras. import requests

import lxml

url = 'http://espn.go.com/college-football/bcs/_/year/2013 '

result = requests.get(url)

c= result.content
soup = BeautifulSoup((c), 'lxml')

soup.prettify()

Broadcom sound cards & media devices driver download. summary = soup.find('table',attrs = {'class':'tablehead'})
tables = summary.find_all('table')

#tables = summary.fins_all('td' /'tr')

data =[]

rows = tables[0].findAll('tr')
''
for tr in rows:
cols = tr.findAll('td')
for td in cols:
text = td.find(text = True)
print (text),
data.append(text)
''
soup = BeautifulSoup((html), 'lxml')
table = soup.find('table', attrs = {'class' : 'tablehead'})

list_of_rows=[]

for row in table.findAll('tr')[0:]:
list_of_cells=[]
for cell in findAll('td'):
text = cell.text.replace(' ',')
list_of_cells.append(text)
list_of_rows.append(list_of_cells)

outfile = open('./Rankings.csv', 'wb')
writer = csv.writer(outfile)
writer.writerows(list_of_rows)

Can please you help me with this code? Am using python 3.5

Sign up for freeto join this conversation on GitHub. Already have an account? Sign in to comment

Web Scraping Python Beautifulsoup Github

web-scraping-python.py

Web Scraping Using Selenium Python Github

importurllib.request
frombs4importBeautifulSoup
wiki='https://pt.wikipedia.org/wiki/Lista_de_capitais_do_Brasil_por_%C3%A1rea'
page=urllib.request.urlopen(wiki)
soup=BeautifulSoup(page, 'html.parser')
table=soup.find('table')
A=[]
B=[]
C=[]
D=[]
E=[]
forrowintable.findAll('tr'):
cells=row.findAll('td')
iflen(cells)5:
A.append(cells[0].find(text=True))
B.append(cells[1].find(text=True))
C.append(cells[2].find(text=True))
D.append(cells[3].find('a').text)
E.append(cells[4].find(text=True))
importpandasaspd
df=pd.DataFrame(index=A, columns=['Posição'])
df['Posição']=A
df['Estado']=B
df['Código/IBGE']=C
df['Capital']=D
df['Área']=E
df

commented Nov 9, 2018

Existe um artigo explicando os detalhes. Acesse aqui!

Flipkart Web Scraping Python Github

Web

Python Scrapy Github

Sign up for freeto join this conversation on GitHub. Already have an account? Sign in to comment




Comments are closed.